Adaptive Control Using a Recurrent Neural Network Observer

نویسندگان

  • J. and Dourado OBSERVER Henriques
  • A.
چکیده

A new recurrent neural network approach for on line adaptive control is presented. The resulting control scheme matches both the conventional and neural control methods. Using input-output data, a modified recurrent Elman’s network is trained to model a general non-linear discrete time system. By assuming a linearisation of this neural model a time varying adaptive observer is derived. Therefore conventional control techniques, like pole placement or quadratic optimal control, can be applied. Using simultaneous on line training of the neural network and controller synthesis, the resulting algorithm is adaptive. In order to evaluate its performance, this technique is applied to a laboratory scaled pilot plant, an airstream heating, and compared with the performance of a conventional self-tuning adaptive controller (STAC). For this particular process the experimental results allows to conclude that this control strategy is a promising technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

Speed Observer Design for Linear Induction Motor Drives

In this paper, a neural network model reference adaptive system speed observer is designed, which can be used in speed control of linear induction motors (LIMs). Dynamical equations of LIM have been considered accurate. In other words, the end effect and the electrical losses of the motor have been included in the motor equivalent circuit. Then equations of the reference model and adaptive mode...

متن کامل

Adaptive Speed Observer using Artificial Neural Network for Sensorless Vector Control of Induction Motor Drive

This paper presents an adaptive speed observer for an induction motor using an artificial neural network with a direct field-oriented control drive. The speed and rotor flux are estimated with the only assumption that from stator voltages and currents are measurable. The estimation algorithm uses a state observer combined with an intelligent adaptive mechanism based on a recurrent neural networ...

متن کامل

Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...

متن کامل

Real-Time Output Feedback Neurolinearization

 An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations.  Online training of neuroline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998